第1頁,共2頁

- 1. (A) (15 pts) As shown in figure (a) below, an uniform charge distribution of density ρ (>0) in the infinitely long cylindrical region where $|r| \le R$, and $r = (x^2 + y^2)^{1/2}$. Find the *E*-field (direction and magnitude) on x-axis for $0 \le x \le 2R$.
 - (B) (10 pts) Now an layer of negative charges with the same density is placed around the charges in part (a), as shown in figure (b). Find the *E*-field (direction and magnitude) again on x-axis for $0 \le x \le 2R$.

- 2. (A) (15 pts) As shown in the figure (a) below, in the region where $|x| \le d$, there is an uniform current distribution of density J(>0) in the z-direction (out of page). Find the B-field (direction and magnitude) on x-axis for $0 \le x \le 2d$.
 - (B) (10 pts) Now half of the current is replaced with current in the opposite direction (into the page) with the same density, as shown in figure (b). Find the *B*-field (direction and magnitude) again on x-axis for $0 \le x \le 2d$.

命題委員簽章:甘宏志七泽辰

系所主管簽章:

第3節

第2頁,共2頁

3. The circuit in Figure A is situated in a magnetic field $\vec{B} = \vec{a_z} 5 \cos(7\pi 10^9 t - \frac{4}{5}\pi x)$

Assuming $R=15\Omega$, find the current i.

Here we use the unit as μ T. (10%)

- 4. Determine the phase retardation between the TE and TM waves that is introduced by total internal reflection at the boundary between glass (n=1.5) and air (n=1) at an angle of incidence $\theta = 1.2\theta_c$, where θ_c is the critical angle. (10%)
- 5. The electric-field complex-amplitude vector for a monochromatic wave of wavelength λ_0 traveling in free space is $\vec{E}(\vec{r}) = E_0 \sin \beta y \, e^{-j\beta_z} \vec{x}$
- (a) Determine a relation between λ_0 and β (5%).
- (b) Derive an expression for the magnetic-field complex-amplitude vector $\overline{H}(\vec{r})$ (10%)
- (c) Determine the direction of the flow of optical power (5%).
- (d) This wave may be regards as the sum of two TEM plane waves. Determine their direction of propagation (10%).

命題委員簽章:女名志子拜辰

系所主管簽章: